
File System Forensics
FAT and NTFS

1
Copyright Priscilla Oppenheimer

File System

• A file system is a part of the Operating
System (OS) that specifies how files are
named, stored, and organized in
storage.

• The file system manages files and
folders, and the information that the OS
and users need to locate and access
these items.

2
Copyright Priscilla Oppenheimer

FAT File Systems

Copyright Priscilla Oppenheimer
3

File Allocation Table (FAT)
File Systems

• Simple and common
• Primary file system for DOS and Windows 9x
• Can be used with newer Windows versions but

the New Technologies File System (NTFS) is
default for newer versions

• Supported by all Windows and UNIX varieties
• Used on flash cards and USB thumb drives

4
Copyright Priscilla Oppenheimer

The FAT Family
• FAT12, FAT16, FAT32

– The number refers to the quantity of bits
used in the FAT to refer to clusters

Copyright Priscilla Oppenheimer
5

Disk Storage Review
• Data is stored on disks one entire

sector at a time
– A sector is usually 512 bytes
– If you use only one byte, the system still

provides the other 511 bytes for you
– A sector is the minimum size read from,

or written to, a disk
– A sector is the minimum I/O unit

Copyright Priscilla Oppenheimer
6

Disk Storage Review (cont.)
• Space is allocated to a file one cluster

at a time
– A cluster is a fixed number of sectors

• Must be a power of 2 (1,2,…64)
– Unused sectors retain the data that was

on them prior to allocation
– A cluster is the minimum file allocation

unit

Copyright Priscilla Oppenheimer
7

Clusters

Sector 1

Sector 2

Sector 3

Sector 4

Cluster 1

Sector 1

Sector 2

Sector 3

Sector 4

Cluster 2

Copyright Priscilla Oppenheimer
8

File Data (Example 1)

Sector 1

Sector 2

Sector 3

Sector 4

Cluster 1

Sector 1

Sector 2

Sector 3

Sector 4

Cluster 2

Copyright Priscilla Oppenheimer
9

File Data (Example 2)

Sector 1

Sector 2

Sector 3

Sector 4

Cluster 1

Sector 1

Sector 2

Sector 3

Sector 4

Cluster 2

Sector 1

Sector 2

Sector 3

Sector 4

Cluster 3

Copyright Priscilla Oppenheimer
10

Slack
• Slack is the space allocated to a file, but

unused
– Space at the end of a sector that remains unused by the file
– Sectors allocated to the file that the file has not yet used

• Slack space often contains useful
evidence
– Unused bytes in an allocated sector are less useful
– Unused sectors in an allocated cluster retain their original

contents and are very useful

Copyright Priscilla Oppenheimer
11

Unallocated Clusters
• Many clusters on a modern hard drive

are unallocated
• Unallocated clusters may have been

allocated earlier though
– These clusters retain their data until they are

reallocated to a new file
– Deleted files are still recoverable!

Copyright Priscilla Oppenheimer
12

Cluster Allocation Algorithms

• First available
– Always start at the beginning of the file

system
– Fragmented files common
– Recovery of deleted content better at end

of file system

Copyright Priscilla Oppenheimer
13

Cluster Allocation Algorithms
• Best fit

– Search for consecutive clusters that fit the
size of file

– Only works for files that do not grow
• Next available

– Start search with the cluster that was most
recently allocated

– More balanced for data recovery
– Used by newer Windows versions

Copyright Priscilla Oppenheimer
14

Partitions Review
• The user creates partitions (logical drives or

volumes)
– Creates Master Boot Record with partition table
– Each partition uses a file system

• FAT12, FAT16, FAT32, NTFS on Windows systems
• EXT2, EXT3, UFS1, UFS2 on Linux and UNIX systems

• Recovery tools can often find data even if the
disk was repartioned
– Look for tell-tale symptoms of a file system
– FAT file systems have 0x55AA in bytes 510 and 511

of the partition, for example

Copyright Priscilla Oppenheimer
15

Partitions Review

• MBR in first 512-byte sector on disk
– Boot code (Bytes 0-445)
– Partition table (bytes 446-509)
– Signature (bytes 510-511, value = 0x55AA)

• Partition table has four entries
– Disk has four primary partitions
– A primary partition may hold extended

partitions

Copyright Priscilla Oppenheimer
16

Disk

Partition 1 Partition 2

Master Boot Record
Including Partition Table

& Signature

Copyright Priscilla Oppenheimer
17

File Systems
• High-level formatting creates file system data

structures
– Root directory
– Data that tracks which clusters are unused,

allowing the OS to find available clusters quickly
• File Allocation Table (FAT) on older Windows

systems
• $Bitmap in the Master File Table (MFT) on

newer Windows systems
– Exact details depend on operating system

Copyright Priscilla Oppenheimer
18

Partition Holds a File System from
the FAT Family

Partition 1 Partition 2

FAT File System

Copyright Priscilla Oppenheimer
19

FAT Family File System

Partition 1 Partition 2

FAT File System

Reserved
Area FAT Area Data Area

Copyright Priscilla Oppenheimer
20

FAT File System Layout

Partition 1 Partition 2

FAT File System

Reserved
Area FAT Area Data Area

FAT Boot Sector Primary and
Backup FATs Clusters Store Directory and File Content

Copyright Priscilla Oppenheimer
21

FAT File System Boot Sector

Partition 1 Partition 2

FAT File System

Reserved
Area FAT Area Data Area

FAT
Boot Sector

Primary and
Backup FATs Clusters

Jump to
boot
code

Bytes
per

Sector

Sectors
Per

Cluster

Number
of

Fats
Boot Code Signature

(0x55AA)

Size of
Reserved

Area

OEM
Name

Copyright Priscilla Oppenheimer
22

FAT32 Boot Sector

Partition 1 Partition 2

FAT File System

Reserved
Area FAT Area Data Area

FAT
Boot Sector

Primary and
Backup FATs Clusters

Boot Code Signature
(0x55AA)

Sector
for backup
Boot Sector

Jump to
boot
code

Bytes
per

Sector

Sectors
Per

Cluster

Number
of

Fats

Size of
Reserved

Area

OEM
Name

Sector for
FSINFO

Copyright Priscilla Oppenheimer
23

FAT32 FSINFO
Hints about where the OS can find free clusters

488-491

492-495

496-507

4-483

484-487

Signature (0x41615252)0-3

508-511

Not Used

Signature (0x61417272)

Number of free clusters

Next free cluster

Not Used

Signature (0x55AA0000)

Byte Range Description

Copyright Priscilla Oppenheimer
24

FAT Entries
• 12, 16, or 32 bits
• First addressable cluster is cluster 2
• In FAT16, non-addressable cluster 0

stores the media type
– 0xF0 means removable
– 0xF8 means non-removable
– Duplicates byte 21 of volume boot record

• In FAT16, non-addressable cluster 1
stores the dirty status of the file system

Copyright Priscilla Oppenheimer
25

File Allocation Table Concepts

Partition 1 Partition 2

FAT File System
Reserved

Area FAT Area Data Area

FAT Boot Sector Primary and
Backup FATs Clusters

FAT

Entry

000 …

002 000

003 004

… …

072 FFF

… …

next cluster

Cluster

001 …

not allocated

004 072 next cluster

end of file

Copyright Priscilla Oppenheimer
26

End of File and Bad Cluster

• End-of-file marker
– Greater than 0xFF8 for FAT12
– Greater than 0xFFF8 for FAT16
– Greater than 0xFFFF FFF8 for FAT32

• Bad cluster
– 0xFF7 for FAT12
– 0xFFF7 for FAT16
– 0x FFFF FFF7 for FAT32

Copyright Priscilla Oppenheimer
27

Data Area Concepts

Partition 1 Partition 2

FAT File System

Reserved
Area FAT Area Data Area

FAT Boot Sector Primary and
Backup FATs Clusters

Root Directory Other Directories and Files

Copyright Priscilla Oppenheimer
28

Root Directory

• Fixed length in FAT12/16
– 32 sectors
– Each entry is 32 bytes
– 512 entries total
– Starts before cluster 2

• Not fixed length in FAT32
– Starts at cluster 2
– Each entry is still 32 bytes

Copyright Priscilla Oppenheimer
29

FAT Directories

Partition 1 Partition 2

FAT File System

Reserved
Area FAT Area Data Area

FAT Boot
Sector

Primary and
Backup FATs Clusters

Directory Files

Directory Entry
Long File Name

8.3 Filename

File attributes (read
only, hidden, system, long file
name, directory, archive, etc.)

Created time/day

Accessed day

Modified time/day

First cluster
address

Size of file (0 for
directory)

Copyright Priscilla Oppenheimer
30

Deleting a FAT File
Deleting dir1\file1.txt

1. Read Fat Boot Sector (sector 0 of the
volume) to understand structure and location
of Reserved, FAT, and Data areas

2. Locate dir1 in Root Directory; determine its
starting cluster

3. Go to dir1 cluster; determine starting cluster
for file1.txt

4. Set FAT entries for file1.txt to 0
5. Change filename to sile1.txt in dir1 directory

– First character becomes 0xE5
Copyright Priscilla Oppenheimer

31

Directory and FAT

First cluster used by file

02C

02D

02E

0 2 D

0 2 E

F F F

…

FAT
Directory

file2

file3

file4

001
002

…

…

…

…

000

O2C file1.txt

Copyright Priscilla Oppenheimer
32

Directory and FAT
Deleted file

sile1.txt

First cluster used by file

02C

02D

02E

0 0 0

0 0 0

0 0 0

…

FAT
Directory

file2

file3

file4

001
002

…

…

…

…

000

O2C

Copyright Priscilla Oppenheimer
33

Recovering Files

• Easy if file isn't fragmented and clusters
haven't been reallocated!
– Go to directory entry
– Change the first character of the file name

from 0xE5 to original (or guess if original
can't be derived)

– Go to FAT for first cluster
– Get that cluster and the next consecutive

clusters (depending on size of file)
Copyright Priscilla Oppenheimer

34

It's Not Perfect
• Potential problems

– Fragmented files
– Clusters that have been overridden
– Missing directories or directory entries

• Although the dot and dot dot entries may help

• Best bet will be when fragmentation is
minimal and the deletion was recent
– Usually errors in recovery are obvious
– Partial recovery is better than nothing!

Copyright Priscilla Oppenheimer
35

New Technologies File
System (NTFS)

Copyright Priscilla Oppenheimer
36

NTFS
• Default file system for Windows 10, 8, 7,

Vista, XP, 2008, 2003, 2000, NT
• No published spec from Microsoft that

describes the on-disk layout
• Good source for NTFS information:

– www.ntfs.com

Copyright Priscilla Oppenheimer
37

http://www.ntfs.com

Microsoft NTFS Goals

• Provide a reliable, secure, scalable, and
efficient file system

• Get a foothold in the lucrative business
and corporate markets

• Some concepts borrowed from OS/2 High
Performance File System (HPFS)

Copyright Priscilla Oppenheimer
38

NTFS Features
• Logging

– Transaction-based
• File and folder permissions
• Disk quotas
• Reparse points (used to link files)
• Sparse file support
• Compression
• Encryption
• Alternate data streams

Copyright Priscilla Oppenheimer
39

Sparse Files

• Clusters that contain all zeros aren’t
written to disk

• Analysis considerations
– A deleted sparse file is hard to recover
– If file system metadata is deleted or

corrupted, a sparse file might not be
recoverable

Copyright Priscilla Oppenheimer
40

File Compression
• Data is broken into equal-sized

compression units (e.g. 16 clusters)
• An attempt is made to compress each unit
• Parts of a file may be compressed while

other parts aren’t

Copyright Priscilla Oppenheimer
41

File Compression Analysis
Considerations

• A single file can use different compression
methods (e.g. none, sparse, or variant of LZ77)

• Recovery tools need to support decompression
• A deleted compressed file is hard to recover
• If file system metadata is deleted or corrupted, a

compressed file might not be recoverable

Copyright Priscilla Oppenheimer
42

Encrypting File System (EFS)
• Uses both symmetric key encryption

(DESX) and asymmetric key encryption
(RSA)

• Generates a single file encryption key
(FEK) and encrypts file with FEK using
DESX

• Encrypts FEK with RSA
• Stores FEK with file

Copyright Priscilla Oppenheimer
43

File Encryption Key
Encryption

• FEK is encrypted with user’s public key
• FEK is decrypted with user’s private key
• If policy allows it, FEK is also encrypted

with public key of recovery agent (and
decrypted with private key of recovery
agent)

Copyright Priscilla Oppenheimer
44

File Encryption

Source: NTFS.com
Copyright Priscilla Oppenheimer

45

http://ntfs.com/internals-encrypted-files.htm

EFS Analysis Considerations
• By default a user’s private key is stored in

the Windows registry, encrypted with login
password as key
– Login password is susceptible to brute force

attack and private key might be compromised
• EFS creates a temporary file (EFS0.TMP)

with plaintext data
– Marks it as deleted when finished but does

not actually erase contents
Copyright Priscilla Oppenheimer

46

Alternate Data Streams

• Data added to a file
• Introduced to support Macintosh files

that have a data and resource fork
• Almost impossible to detect with normal

file browsing techniques
• A favorite of hackers and criminals

Copyright Priscilla Oppenheimer
47

Creating an ADS

• To create an ADS named foo to go with
the file.txt file, use the following DOS
command
– echo "Hello There" > file.txt:foo

Copyright Priscilla Oppenheimer
48

Another ADS Example

Source: WindowSecurity.com
Copyright Priscilla Oppenheimer

49

http://www.windowsecurity.com/articles/Alternate_Data_Streams.html

Start the Program

Copyright Priscilla Oppenheimer
50

What Program Is Running?

Copyright Priscilla Oppenheimer
51

NTFS Basic Concepts
• Everything is a file
• Files have attributes

– $SOME_UPPER_CASE_THING
• $FILE_NAME
• $STANDARD_INFORMATION

– Creation, altered, accessed times; flags (read only,
hidden, system, archive, etc.)

• $DATA (the actual content)

Copyright Priscilla Oppenheimer
52

File System Metadata Files
• Files that store file system

administrative data
• Note that they are files (unlike FAT

which was a separate data structure)
• Name begins with $ and first letter is

capitalized
– $MFT
– $LogFile

Copyright Priscilla Oppenheimer
53

Master File Table

• Contains information about all files and
directories

• Every file and directory has at least one
entry in the table

• Each entry is simple
– 1 KB in size
– Entry header is first 42 bytes
– Remaining bytes store attributes

Copyright Priscilla Oppenheimer
54

File System Metadata Files
First 16 MFT Entries Are Reserved

Entry File Name Description
0 $MFT Entry for MFT itself

1 $MFTMirr Backup of MFT

2 $LogFile Journal

3 $Volume Volume label, etc.

4 $AttrDef IDs for attributes

5 / Root directory

6 $Bitmap Allocation status of clusters

7 $Boot Boot sector

8 $BadClus Clusters with bad sectors
Copyright Priscilla Oppenheimer

55

Resident and Non-Resident
Attributes

• A resident attribute stores its content in
the MFT entry

• A non-resident attribute stores its content
in external clusters

• Non resident attributes are stored in
cluster runs

• The attribute header gives the starting
cluster address and its run length

Copyright Priscilla Oppenheimer
56

Non-Resident Attributes

• $DATA attribute for files > 1 KB
• $DATA attribute for $Boot
• $DATA attribute for $MFTMirr
• $DATA attribute for $LogFile

Copyright Priscilla Oppenheimer
57

Hard Disk Drives Review
• Factory low-level formatting defines tracks and sectors on

a blank disk
– A track contains many sectors
– A sector is typically 512 bytes
– A sector is the minimum I/O unit

Copyright Priscilla Oppenheimer
58

Clusters
• A cluster is a group of consecutive

sectors
• A cluster is the minimum file allocation

unit
• The number of sectors per cluster is a

power of 2
– The number is stored in the volume boot

sector
– Typical values are 21=2, 22=4, 23=8, 24=16

Copyright Priscilla Oppenheimer
59

Partitions
• The user creates partitions (logical drives

or volumes)
– Each partition holds a file system

• FAT12, FAT16, FAT32, NTFS on Windows
systems

• EXT2, EXT3, UFS1, UFS2 on Linux and UNIX
systems

Copyright Priscilla Oppenheimer
60

File Systems
• High-level formatting creates file system

data structures
– Root directory
– Data that tracks which clusters are unused,

allowing the OS to find available clusters
quickly
• File Allocation Table (FAT) on older

Windows systems
• $Bitmap file in the Master File Table

(MFT) on newer Windows systems

Copyright Priscilla Oppenheimer
61

DOS Disk Review

Partition 1 Partition 2

Master Boot Record
Including Partition Table

& Signature

Copyright Priscilla Oppenheimer
62

Partition Holds an NTFS File System

Partition 1 Partition 2

NTFS File System

Copyright Priscilla Oppenheimer
63

NTFS: Everything Is a File

Partition 1 Partition 2

NTFS File System

Volume Boot
Sector More Files

Copyright Priscilla Oppenheimer
64

NTFS Volume Boot Sector

Partition 1 Partition 2

NTFS File System

Volume Boot
Sector More Files

Jump to
boot
code

Bytes
per

Sector

Sectors
Per

Cluster

Location of
MFT Boot Code Signature

(0xAA55)
OEM ID:

NTFS
Location of
MFT Mirror

Copyright Priscilla Oppenheimer
65

A Freshly Formatted NTFS Volume

Partition 1 Partition 2

NTFS File System

Volume Boot
Sector More Files

MFT Free Space More
Metadata Free Space

Hidden Copy
of Volume
Boot Sector

Free Space

Copyright Priscilla Oppenheimer
66

Metadata in Center of Volume

Partition 1 Partition 2

NTFS File System

Volume Boot
Sector More Files

$MFTMirr $DATA $LogFile $DATA

MFT Free Space More
Metadata Free Space

Hidden Copy
of Volume
Boot Sector

Free Space

Copyright Priscilla Oppenheimer
67

MFT
Partition 1 Partition 2

NTFS File System

Volume Boot
Sector More Files

$LogFile

$Bitmap

$Boot

$BadClus

$MFT

$MFTMirr

MFT Free Space More
Metadata Free Space

Hidden Copy
of Volume
Boot Sector

Free Space

Copyright Priscilla Oppenheimer 68

MFT Attributes
Partition 1 Partition 2

NTFS File System

Volume Boot
Sector More Files

MFT Free Space More
Metadata Free Space

Hidden Copy
of Volume
Boot Sector

Free Space

Header Attribute
Header Attribute Attribute

Header Attribute

Header Attribute
Header Attribute Attribute

Header Attribute

Header Attribute
Header Attribute Attribute

Header Attribute

Header Attribute
Header Attribute Attribute

Header Attribute

Header Attribute
Header Attribute Attribute

Header Attribute

Header Attribute
Header Attribute Attribute

Header Attribute

MFT
Entries

Copyright Priscilla Oppenheimer
69

MFT Entry Header

Partition 1 Partition 2

NTFS File System

Volume Boot
Sector More Files

MFT Free Space More Metadata Files Free Space
Hidden Copy

of Volume
Boot Sector

Attribute
Header Attribute Attribute

Header AttributeHeader

Signature (“FILE”) Offset to Fixup Array # of Entries in
Fixup Array Sequence Number Other Stuff Fixup Values

MFT
Entry

In-Use
and

Directory
Flags

Copyright Priscilla Oppenheimer
70

Creating an NTFS File
Creating dir1\file1.txt

1. Read volume boot sector to locate MFT.
2. Read first entry in MFT to determine layout of MFT.
3. Allocate an MFT entry for the new file.
4. Initialize MFT entry with $STANDARD_INFORMATION, In-Use Flag,

etc.
5. Check MFT $Bitmap to find free clusters, using best-fit algorithm.
6. Set corresponding $Bitmap bits to 1.
7. Write file content to clusters and update $DATA attribute with

starting address of cluster run and run length.
8. Read root directory (MFT entry 5), traverse index, and find dir1.
9. Read $INDEX_ROOT attribute for dir1 and determine where file1.txt

should go.
10. Create new index entry; resort index tree.
11. Enter steps in $LogFile (as each step is taken).

Copyright Priscilla Oppenheimer 71

An NTFS File
0

1

2

5

6

200

304

$MFT

…

$LogFile

…

\

$Bitmap

…

dir1

…

file1.txt

$LogFile

\ Index

dir 1 – 200

\ dir1

file1.txt – 304

Cluster 692 Cluster 693

Cluster Bitmap

file1.txt $DATA attribute

…11…

…1…
MFT Entry Bitmap

Copyright Priscilla Oppenheimer 72

NTFS File Deleted
Data in blue boxes is unallocated

0

1

2

5

6

200

304

$MFT

…

$LogFile

…

\

$Bitmap

…

dir1

…

file1.txt

$LogFile

\ Index

dir 1 – 200

\ dir1

Cluster 692 Cluster 693

Cluster Bitmap

file1.txt $DATA attribute

…00…

…0…
MFT Entry Bitmap

Copyright Priscilla Oppenheimer 73

Deleting an NTFS File
Deleting dir1\file1.txt

1. Read volume boot sector to locate MFT.
2. Read first entry in MFT to determine layout of MFT.
3. Read root directory (MFT entry 5), traverse index, and

find dir1.
4. Read $INDEX_ROOT for dir1 entry and find file1.txt

entry.
5. Remove filename entry from index; move other entries

over.
6. Unallocate MFT entry and clean In-Use Flag.
7. Set MFT $Bitmap entries to 0.
8. Enter steps in $LogFile (as each step is taken).

Copyright Priscilla Oppenheimer
74

Summary

• NTFS is more complicated than FAT but
also has more scalability, reliability, and
security features

• Forensics analysis and recovery of files
is possible especially if $MFT or
$MFTMirr are in good shape

• Recovery challenges include
compression and encryption

Copyright Priscilla Oppenheimer
75

