
File System Forensics
FAT and NTFS

1
Copyright Priscilla Oppenheimer



File System

• A file system is a part of the Operating 
System (OS) that specifies how files are 
named, stored, and organized in 
storage. 

• The file system manages files and 
folders, and the information that the OS 
and users need to locate and access 
these items.
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FAT File Systems
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File Allocation Table (FAT) 
File Systems

• Simple and common
• Primary file system for DOS and Windows 9x
• Can be used with newer Windows versions but 

the New Technologies File System (NTFS) is 
default for newer versions

• Supported by all Windows and UNIX varieties
• Used on flash cards and USB thumb drives
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The FAT Family
• FAT12, FAT16, FAT32

– The number refers to the quantity of bits 
used in the FAT to refer to clusters
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Disk Storage Review
• Data is stored on disks one entire 

sector at a time
– A sector is usually 512 bytes
– If you use only one byte, the system still 

provides the other 511 bytes for you
– A sector is the minimum size read from, 

or written to, a disk
– A sector is the minimum I/O unit
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Disk Storage Review (cont.)
• Space is allocated to a file one cluster 

at a time
– A cluster is a fixed number of sectors

• Must be a power of 2 (1,2,…64)
– Unused sectors retain the data that was 

on them prior to allocation
– A cluster is the minimum file allocation 

unit
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File Data (Example 1)
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File Data (Example 2)
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Slack
• Slack is the space allocated to a file, but 

unused
– Space at the end of a sector that remains unused by the file
– Sectors allocated to the file that the file has not yet used

• Slack space often contains useful 
evidence
– Unused bytes in an allocated sector are less useful
– Unused sectors in an allocated cluster retain their original 

contents and are very useful
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Unallocated Clusters
• Many clusters on a modern hard drive 

are unallocated
• Unallocated clusters may have been 

allocated earlier though
– These clusters retain their data until they are 

reallocated to a new file
– Deleted files are still recoverable!
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Cluster Allocation Algorithms

• First available
– Always start at the beginning of the file 

system
– Fragmented files common
– Recovery of deleted content better at end 

of file system
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Cluster Allocation Algorithms
• Best fit

– Search for consecutive clusters that fit the 
size of file

– Only works for files that do not grow 
• Next available

– Start search with the cluster that was most 
recently allocated

– More balanced for data recovery
– Used by newer Windows versions
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Partitions Review
• The user creates partitions (logical drives or 

volumes)
– Creates Master Boot Record with partition table
– Each partition uses a file system

• FAT12, FAT16, FAT32, NTFS on Windows systems
• EXT2, EXT3, UFS1, UFS2 on Linux and UNIX systems

• Recovery tools can often find data even if the 
disk was repartioned
– Look for tell-tale symptoms of a file system
– FAT file systems have 0x55AA in bytes 510 and 511 

of the partition, for example
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Partitions Review

• MBR in first 512-byte sector on disk
– Boot code (Bytes 0-445)
– Partition table (bytes 446-509)
– Signature (bytes 510-511, value = 0x55AA)

• Partition table has four entries
– Disk has four primary partitions
– A primary partition may hold extended 

partitions
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Disk 
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File Systems
• High-level formatting creates file system data 

structures
– Root directory 
– Data that tracks which clusters are unused, 

allowing the OS to find available clusters quickly
• File Allocation Table (FAT) on older Windows 

systems
• $Bitmap in the Master File Table (MFT) on 

newer Windows systems
– Exact details depend on operating system
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Partition Holds a File System from 
the FAT Family
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FAT Family File System
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FAT File System Layout
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FAT File System Boot Sector
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FAT32 Boot Sector
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FAT32 FSINFO
Hints about where the OS can find free clusters
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FAT Entries
• 12, 16, or 32 bits
• First addressable cluster is cluster 2
• In FAT16, non-addressable cluster 0 

stores the media type 
– 0xF0 means removable
– 0xF8 means non-removable
– Duplicates byte 21 of volume boot record

• In FAT16, non-addressable cluster 1 
stores the dirty status of the file system
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File Allocation Table Concepts
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End of File and Bad Cluster

• End-of-file marker
– Greater than 0xFF8 for FAT12
– Greater than 0xFFF8 for FAT16
– Greater than 0xFFFF FFF8 for FAT32

• Bad cluster
– 0xFF7 for FAT12
– 0xFFF7 for FAT16
– 0x FFFF FFF7 for FAT32
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Data Area Concepts
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Root Directory

• Fixed length in FAT12/16
– 32 sectors
– Each entry is 32 bytes
– 512 entries total
– Starts before cluster 2

• Not fixed length in FAT32
– Starts at cluster 2
– Each entry is still 32 bytes
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FAT Directories
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Deleting a FAT File
Deleting dir1\file1.txt

1. Read Fat Boot Sector (sector 0 of the 
volume) to understand structure and location 
of Reserved, FAT, and Data areas

2. Locate dir1 in Root Directory; determine its 
starting cluster

3. Go to dir1 cluster; determine starting cluster 
for file1.txt

4. Set FAT entries for file1.txt to 0
5. Change filename to sile1.txt in dir1 directory

– First character becomes 0xE5
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Directory and FAT
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Directory and FAT
Deleted file
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Recovering Files

• Easy if file isn't fragmented and clusters 
haven't been reallocated!
– Go to directory entry
– Change the first character of the file name 

from 0xE5 to original (or guess if original 
can't be derived)

– Go to FAT for first cluster
– Get that cluster and the next consecutive 

clusters (depending on size of file)
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It's Not Perfect
• Potential problems

– Fragmented files
– Clusters that have been overridden
– Missing directories or directory entries

• Although the dot and dot dot entries may help

• Best bet will be when fragmentation is 
minimal and the deletion was recent
– Usually errors in recovery are obvious
– Partial recovery is better than nothing!
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New Technologies File 
System (NTFS)
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NTFS
• Default file system for Windows 10, 8, 7, 

Vista, XP, 2008, 2003, 2000, NT
• No published spec from Microsoft that 

describes the on-disk layout
• Good source for NTFS information:

– www.ntfs.com
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Microsoft NTFS Goals

• Provide a reliable, secure, scalable, and 
efficient file system

• Get a foothold in the lucrative business 
and corporate markets

• Some concepts borrowed from OS/2 High 
Performance File System (HPFS)
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NTFS Features
• Logging 

– Transaction-based 
• File and folder permissions
• Disk quotas
• Reparse points (used to link files)
• Sparse file support 
• Compression
• Encryption
• Alternate data streams
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Sparse Files

• Clusters that contain all zeros aren’t 
written to disk

• Analysis considerations
– A deleted sparse file is hard to recover
– If file system metadata is deleted or 

corrupted, a sparse file might not be 
recoverable
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File Compression
• Data is broken into equal-sized 

compression units (e.g. 16 clusters)
• An attempt is made to compress each unit 
• Parts of a file may be compressed while 

other parts aren’t
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File Compression Analysis 
Considerations

• A single file can use different compression 
methods (e.g. none, sparse, or variant of LZ77)

• Recovery tools need to support decompression 
• A deleted compressed file is hard to recover
• If file system metadata is deleted or corrupted, a 

compressed file might not be recoverable
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Encrypting File System (EFS)
• Uses both symmetric key encryption 

(DESX) and asymmetric key encryption 
(RSA)

• Generates a single file encryption key 
(FEK) and encrypts file with FEK using 
DESX

• Encrypts FEK with RSA
• Stores FEK with file
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File Encryption Key 
Encryption 

• FEK is encrypted with user’s public key
• FEK is decrypted with user’s private key
• If policy allows it, FEK is also encrypted 

with public key of recovery agent (and 
decrypted with private key of recovery 
agent)                                        
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File Encryption

Source: NTFS.com
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EFS Analysis Considerations
• By default a user’s private key is stored in 

the Windows registry, encrypted with login 
password as key
– Login password is susceptible to brute force 

attack and private key might be compromised
• EFS creates a temporary file (EFS0.TMP) 

with plaintext data
– Marks it as deleted when finished but does 

not actually erase contents
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Alternate Data Streams

• Data added to a file 
• Introduced to support Macintosh files 

that have a data and resource fork
• Almost impossible to detect with normal 

file browsing techniques
• A favorite of hackers and criminals
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Creating an ADS

• To create an ADS named foo to go with 
the file.txt file, use the following DOS 
command
– echo "Hello There" > file.txt:foo
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Another ADS Example

Source: WindowSecurity.com
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Start the Program
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What Program Is Running?
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NTFS Basic Concepts
• Everything is a file
• Files have attributes

– $SOME_UPPER_CASE_THING
• $FILE_NAME
• $STANDARD_INFORMATION

– Creation, altered, accessed times; flags (read only, 
hidden, system, archive, etc.)

• $DATA (the actual content)
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File System Metadata Files
• Files that store file system 

administrative data
• Note that they are files (unlike FAT 

which was a separate data structure)
• Name begins with $ and first letter is 

capitalized 
– $MFT
– $LogFile
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Master File Table

• Contains information about all files and 
directories

• Every file and directory has at least one 
entry in the table

• Each entry is simple
– 1 KB in size
– Entry header is first 42 bytes
– Remaining bytes store attributes
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File System Metadata Files
First 16 MFT Entries Are Reserved

Entry File Name Description
0 $MFT Entry for MFT itself

1 $MFTMirr Backup of MFT

2 $LogFile Journal

3 $Volume Volume label, etc.

4 $AttrDef IDs for attributes

5 / Root directory

6 $Bitmap Allocation status of clusters

7 $Boot Boot sector

8 $BadClus Clusters with bad sectors
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Resident and Non-Resident 
Attributes

• A resident attribute stores its content in 
the MFT entry

• A non-resident attribute stores its content 
in external clusters

• Non resident attributes are stored in 
cluster runs

• The attribute header gives the starting 
cluster address and its run length
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Non-Resident Attributes

• $DATA attribute for files > 1 KB
• $DATA attribute for $Boot
• $DATA attribute for $MFTMirr
• $DATA attribute for $LogFile
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Hard Disk Drives Review
• Factory low-level formatting defines tracks and sectors on 

a blank disk
– A track contains many sectors
– A sector is typically 512 bytes
– A sector is the minimum I/O unit
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Clusters
• A cluster is a group of consecutive 

sectors
• A cluster is the minimum file allocation 

unit
• The number of sectors per cluster is a 

power of 2
– The number is stored in the volume boot 

sector
– Typical values are 21=2, 22=4, 23=8, 24=16
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Partitions
• The user creates partitions (logical drives 

or volumes)
– Each partition holds a file system

• FAT12, FAT16, FAT32, NTFS on Windows 
systems

• EXT2, EXT3, UFS1, UFS2 on Linux and UNIX 
systems
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File Systems
• High-level formatting creates file system 

data structures
– Root directory 
– Data that tracks which clusters are unused, 

allowing the OS to find available clusters 
quickly
• File Allocation Table (FAT) on older 

Windows systems
• $Bitmap file in the Master File Table 

(MFT) on newer Windows systems
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DOS Disk Review 

Partition 1 Partition 2

Master Boot Record
Including Partition Table

& Signature
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Partition Holds an NTFS File System

Partition 1 Partition 2

NTFS File System
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NTFS: Everything Is a File 

Partition 1 Partition 2

NTFS File System

Volume Boot 
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NTFS Volume Boot Sector
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A Freshly Formatted NTFS Volume

Partition 1 Partition 2

NTFS File System

Volume Boot 
Sector More Files

MFT Free Space More 
Metadata Free Space

Hidden Copy 
of Volume 
Boot Sector

Free Space
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Metadata in Center of Volume

Partition 1 Partition 2

NTFS File System
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$MFTMirr $DATA $LogFile $DATA

MFT Free Space More 
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Hidden Copy 
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MFT
Partition 1 Partition 2

NTFS File System
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$Boot

$BadClus

$MFT
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MFT Free Space More 
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MFT Attributes
Partition 1 Partition 2

NTFS File System

Volume Boot 
Sector More Files

MFT Free Space More 
Metadata Free Space

Hidden Copy 
of Volume 
Boot Sector

Free Space

Header Attribute 
Header Attribute Attribute 

Header Attribute

Header Attribute 
Header Attribute Attribute 

Header Attribute

Header Attribute 
Header Attribute Attribute 

Header Attribute

Header Attribute 
Header Attribute Attribute 
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Header Attribute 
Header Attribute Attribute 
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Header Attribute 
Header Attribute Attribute 

Header Attribute

MFT
Entries
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MFT Entry Header

Partition 1 Partition 2

NTFS File System

Volume Boot 
Sector More Files

MFT Free Space More Metadata Files Free Space
Hidden Copy 

of Volume 
Boot Sector

Attribute
Header Attribute Attribute

Header AttributeHeader

Signature (“FILE”) Offset to Fixup Array # of Entries in 
Fixup Array Sequence Number Other Stuff Fixup Values

MFT
Entry

In-Use 
and 

Directory 
Flags
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Creating an NTFS File
Creating dir1\file1.txt

1. Read volume boot sector to locate MFT. 
2. Read first entry in MFT to determine layout of MFT.
3. Allocate an MFT entry for the new file.
4. Initialize MFT entry with $STANDARD_INFORMATION, In-Use Flag, 

etc.
5. Check MFT $Bitmap to find free clusters, using best-fit algorithm.
6. Set corresponding $Bitmap bits to 1.
7. Write file content to clusters and update $DATA attribute with 

starting address of cluster run and run length.
8. Read root directory (MFT entry 5), traverse index, and find dir1. 
9. Read $INDEX_ROOT attribute for dir1 and determine where file1.txt 

should go. 
10. Create new index entry; resort index tree.
11. Enter steps in $LogFile (as each step is taken).
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An NTFS File
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NTFS File Deleted
Data in blue boxes is unallocated
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Deleting an NTFS File
Deleting dir1\file1.txt

1. Read volume boot sector to locate MFT. 
2. Read first entry in MFT to determine layout of MFT.
3. Read root directory (MFT entry 5), traverse index, and 

find dir1. 
4. Read $INDEX_ROOT for dir1 entry and find file1.txt 

entry.
5. Remove filename entry from index; move other entries 

over.
6. Unallocate MFT entry and clean In-Use Flag.
7. Set MFT $Bitmap entries to 0.
8. Enter steps in $LogFile (as each step is taken).
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Summary

• NTFS is more complicated than FAT but 
also has more scalability, reliability, and 
security features

• Forensics analysis and recovery of files 
is possible especially if $MFT or 
$MFTMirr are in good shape

• Recovery challenges include 
compression and encryption
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